Piston.my

Super Taikyu Series

Nissan Motor and Nissan Motorsports & Customizing Co. (NMC) have entered Nissan Z Racing Concept cars in the second round of ENEOS Super Taikyu Series 2022 –  the NAPAC Fuji SUPER TEC 24 Hour Race. The event is held at the Fuji Speedway this weekend and the two cars will have the numbers ‘230’ and ‘244’.

The aim of running the two cars is to explore possible competition in various motorsports categories. Car 230, entered by the NISMO team, is equipped with a carbon-neutral-fuel (CNF) compatible engine, while Car 244, entered by the Max Racing team, is powered by a powerful petrol engine.

The two cars have been developed with the knowledge gained over many years of Super GT and customer racing car involvement. By entering the tough 24-hour endurance race, Nissan hopes to accumulate valuable data that can only be obtained through racing. This particularly applies to the CNF-compatible engine that can be applied to future development.

Nissan aims to achieve carbon neutrality throughout its product life cycle by fiscal year 2050 and is therefore also enhancing its efforts in motorsports. For instance, the carmaker is the only Japanese manufacturer that participates in the all-electric ABB FIA Formula E World Championship for single-seater cars.

“In our pursuit of innovation, we have always challenged the limits of what is possible, but we have never compromised on what excites our fans. Whether it is the excitement mixed with the roar of the engines or silent speed, our ambition is to empower our customers to enjoy their experience without compromise,” said Ashwani Gupta, Nissan’s Chief Operating Officer. “The participation of the Nissan Z Racing Concept cars in this demanding race will bring many valuable learnings to develop competitive engines compatible with carbon-neutral fuel.”

“The tougher the race, the more we learn. We expect to acquire ample data and know-how for future vehicle development and, at the same time, we aim to show fans the unique driving performance of the all-new Z that we hope will exceed their expectations,” added Takao Katagiri, Head of Nissan’s Motorsports Business Unit Office and President of NMC.

Nissan Z Safety Car
Besides the two concept racing cars, Nissan Motor and NMC have also provided new Nissan Z for use as a safety car in the Super GT race series. The car has been presented to the organisers, the GT Association, Inc., and the sportscar will make its debut in the third round of the 2022 season at the Suzuka Circuit.

Nissan Z Safety Car

Nissan Z Safety Car

Nissan Z Safety Car

Among the duties of the Safety Car will be pre-race inspection of the tracks for obstacles and leading competition cars when race accidents occur.

Unveiled in August 2021, the all-new Z generation has been enthusiastically received by new and old fans alike. By competing in this season’s Super GT with the Nissan Z GT500, Nissan and NMC aim to broaden the Z’s fan base and increase the exposure of the Super GT series.

For more information on Nissan products and services in Malaysia, visit www.nissan.com.my.

All-new 7th generation Nissan Z revealed! (w/VIDEO)

While the European carmakers are thinking of phasing out combustion engines, the Japanese carmakers are still trying to keep them in use for a while longer, not just in hybrid powertrains but also on their own. In order to meet increasingly stringent emission standards – one reason why industry is going the EV route – the carmakers are exploring and testing the use of environment-friendly fuels.

Toyota is testing an engine running on hydrogen (as a fuel, not for a fuel cell) while Mazda has been running a 100% biodiesel made from used cooking oil and microalgae fats. Subaru is the third member of the same group of companies exploring new fuels that can be classified as carbon-neutral.

All three companies have formed an alliance for such R&D work and are running their prototypes in the current ENEOS Super Taikyu Series. Toyota’s prototype is adapted from a Corolla hatchback, while Mazda is using a Demio model. Subaru has chosen its BRZ sportscar for the purpose.

The use of the Super Taikyu series is suitable for development work as it subjects the prototype engines to extreme conditions within a short period. Feedback on engine performance will help the engineers identify issues and work on solutions so that fuel options can be expanded for combustion engines which are also acceptable for a carbon-neutral society.

For developing of the prototype, Subaru has over 100 engineers involved in Team SDA Engineering.  The engineers made minimal modification to the BRZ to retain mass production vehicle engineering which is reliable. However, racing regulations require safety equipment and the roll cage is an important item to be installed. The structure of the roll-cage was specially designed so that there would be space for EyeSight stereo camera which is used for the active safety systems.


Related stories:
Mazda uses SKYACTIV-D engine wth next-generation biodiesel

Toyota races in Super Taikyu series with hydrogen-fuelled engine


The carbon-neutral fuel is a synthetic fuel formulated by synthesizing sources such as carbon dioxide (CO2), hydrogen and components derived from non-edible biomasses so as to match with Japanese Industrial Standards (JIS) for petrol It is seen as one of the measures for achieving carbon neutrality as the amount of carbon dioxide emitted during combustion is regarded as neutral.

Mazda’s Demio prototype (above) runs on biodiesel made from used cooking oil and microalgae fats, while Toyota’s prototype (below) has an engine running on hydrogen.

When all materials are derived from renewable energy and CO2 emitted during production and transportation process is zero, the fuel can be considered a truly carbon-neutral fuel. However, since there still is CO2 emission during production and the transportation process, the fuel used at this time is not strictly carbon-neutral. Subaru is aiming to make it 100% carbon neutral in the future.

The livery of the race car features the motif of blue and green flame which respectively symbolize the passion of Subaru engineers and environmental friendliness of carbon-neutral fuel.

Hyundai Motor Group aims to take lead in technology for future hydrogen society

For those following auto industry trends, it would appear that the future has to be electrified; first, hybrids with a combustion engine and electric motor, and then just an electric motor alone. It’s considered the only way to address climate change which is blamed partly on exhaust emissions of motor vehicles. Increasingly stringent regulations have made it more and more challenging for manufacturers to develop combustion engines to meet tougher standards and it seems that going electric is the only solution.

Perhaps it is – in the longer term – but for now, the technology is still expensive and hybrid powertrains are just beginning to have cost levels that can reach a much larger number of consumers than fully electric vehicles or battery electric vehicles (BEVs). Furthermore, in many countries, the infrastructure to support BEVs is still not sufficiently developed so it will be inconvenient and impractical owning such vehicles that need regular recharging. In Malaysia, for example, there are around 400 recharging stations at the moment – versus around 3,700 stations selling petrol and diesel.

For these reasons, some manufacturers are looking at other approaches which can give consumers choices. Five Japanese manufacturers – Kawasaki, Mazda, Subaru, Toyota, and Yamaha – are collaborating to find ways to continue using internal combustion engines in a way that can meet stringent regulations and still aim for carbon neutrality.

They are not against full electrification and are developing BEVs too (Toyota will spend 4 trillion yen during this decade on BEV development), but they also think of customers in less developed countries where BEVs will be too expensive. Such people still need transport, so they will be provided vehicles with powertrains that are sufficiently ‘green’.

Realistic alternative approach
This alternative approach is realistic and given the combined technical resources of the 5 companies, new solutions will be found. Back in the early 1970s, when tough exhaust emissions regulations were introduced in America and forced manufacturers to fit catalytic converters, Honda was able to develop its CVCC engine which could run on low-octane fuel and meet the regulations without having a catalytic converter.

Toyota and Yamaha have been jointly working on engines that can run on hydrogen, while Mazda is working on engines that use next-generation bio-diesel. The carmaker previously developed the SKYACTIV-D turbodiesel which was a very efficient engine, and this engine is now being modified to use a 100% bio-derived next-generation fuel called Susteo developed by Japanese firm Euglena Co. Ltd.

Testing in endurance racing
The prototype engine is installed in the Mazda2 Bio concept car and part of its development will include being raced in Japan’s leading domestic endurance racing series, the Super Taikyu Series. This series, which consists of 7 rounds, starts next month at Suzuka and there will be races of 5 or 6 hours as well as a 24-hour event.

Mazda already demonstrated the potential of the 1.5-litre SKYACTIV-D powered car with Euglena’s 100% bio-based fuel made from used cooking oil and microalgae fats when the Mazda2 competed in last November’s Super Taikyu Race.

Participating in the ST-Q class with the Mazda2 Bio concept, Mazda will take part in the full series with a new silver livery. From the third round, it will also compete with a SKYACTIV-G petrol-powered MX-5 in the ST-5 production class, a class that has seen privateer teams have huge success with MX-5s over the last few years.

Mazda SKYACTIV-G engine in MX-5
SKYACTIV-G engine in the MX-5.

Multi-solution approach
Mazda is following a comprehensive strategy called the multi-solution approach, which takes into account all available solutions to reach climate neutrality and to suit individual mobility needs as well as regional conditions. It will continue to make investments in developing conventional hybrids, diesel engine models, BEV models and plug-in hybrid (PHEV) models while, at the same time, promoting initiatives in renewable fuels such as 100% bio-based fuels.

Next-generation biodiesel fuels, which are made from sustainable raw materials such as microalgae fats and used cooking oil, do not compete with food crops, which has been an issue with existing biodiesel fuels. As these fuels can also be used as alternatives to diesel in existing vehicles and equipment without any modification, no additional fuel supply infrastructure is required. Therefore, biodiesel can be expected to play a prominent role as an excellent liquid fuel source in promoting carbon neutrality.

High-performance Lexus V8 modified to run on hydrogen in Toyota-Yamaha project

Since May this year, a special Toyota Corolla Sport run by the ROOKIE Racing arm of TOYOTA GAZOO Racing has been competing in the Super Taikyu Series 2021. Its engine doesn’t run on petrol but uniquely, on hydrogen. This is not the same as the powertrain in the Mirai EV which has its electric motors powered by a hydrogen fuel cell. For the engine in the Corolla Sport, a prototype, the combustion process uses hydrogen.

Combustion in a hydrogen-fuelled engine occurs at a faster rate than in petrol engines, resulting in a characteristic of good responsiveness. While having excellent environmental performance, hydrogen engines still have the typical character of a combustion engine, especially ‘familiar’ sounds and vibrations. Except for the combustion of minute amounts of engine oil during driving, which is also the case with petrol engines, hydrogen engines emit zero CO2 when in use.

Prototype Corolla Sport with hydrogen engine racing in Super Taikyu series in Japan.

Moving to the next steps
As the R&D engineers gain increasing experience and feedback from running the engine in the harsh conditions of motorsport in Japan, they are progressing towards the next steps. This is demonstrated in an experimental hydrogen-powered GR Yaris which shares same powertrain as the prototype Corolla Sport racing car.

Second generation of the Mirai fuel cell electric vehicle (FCEV) which uses hydrogen in a process that generates electricity.

The car’s hydrogen fuel, fuel tanks and refuelling process are the same as those found in Mirai fuel cell electric vehicle (FCEV) which is now in its second generation. The hydrogen combustion engine technology is still in the early stages of conceptual development and experimentation, having started in 2017, and is not yet ready for commercialisation. Nonetheless, Toyota’s experimental hydrogen-powered Corolla Sport is already delivering high performance at motorsport events in Japan with almost zero tailpipe emissions.

Modified GR Yaris engine
The engine modified to run on hydrogen is the G16E-GTS, 1.6-litre, in-line 3-cylinder, turbocharged unit used in production versions of the GR Yaris, but with a modified fuel supply and injection system for use with hydrogen as fuel.

GR Yaris 3-cylinder turbocharged engine (version in production model shown) has been modified to run on hydrogen.

Toyota has been strengthening its efforts towards achieving carbon neutrality, such as by aiming to promote the use of hydrogen through the popularisation of FCEVs and numerous other fuel-cell-powered products. By further refining its hydrogen engine technologies through motorsports, it intends to aim for the realisation of an even better hydrogen-based society.

Motorsport as a testing ground
The uses of motorsport as a testing ground reflects the firm belief of Kiichiro Toyoda, the founder of Toyota Motor Corporation, that sporting competition is a driver for progress. In March 1952, he said: “Japan’s auto industry must succeed in building passenger vehicles. To this end, manufacturers must participate in auto-racing to test their vehicles’ durability and performance and display their utmost performance. With competition comes progress, as well as excitement among motoring fans. The aim of racing is not just to satisfy our curiosity, but rather to enable the development of the Japanese passenger vehicle industry.”

“We’ve taken the first step to compete with and develop our hydrogen-powered engine with the mindset of taking on the challenge. I imagine things will look a little different 10 years from now, and I hope people will look back and see how we took on the challenge with positivity and enjoyed every moment of it,” added Akio Toyoda, President of Toyota Motor Corporation as well as grandson of Kiichiro.

Transitioning to electric vehicles is one approach Toyota is taking to help create a carbon-neutral society. To achieve this goal, it is developing multiple electrified technologies, including hydrogen, which it views as one of the key building blocks for CO2 reduction.

Second generation fuel cell modules
To help expand its hydrogen technology from cars to more diverse applications, it has repackaged the advanced fuel cell system used in its Mirai saloon into compact fuel cell modules. From January 2022, Toyota will start production of these second generation modules.

The new system has been packaged into modules that are more compact, lighter in weight and provide greater power density. They are available in two formats: a cube and a flat, rectangular shape, allowing greater flexibility and adaptation for different applications.

Toyota began fuel cell development in 1992 and has since continued to refine its hydrogen technology. The second generation fuel cell modules will be assembled by a manufacturing team at Toyota Motor Europe’s (TME) R&D centre in Belgium. The new facility houses a pilot assembly line combining advanced technology content with high-quality assembly techniques.

Toyota chose Europe as the location for its second generation fuel cell module assembly as it sees demand growing significantly across the region. Working with businesses interested in using Toyota’s technology in their applications, TME’s Fuel Cell Business Unit will offer the necessary engineering support for integration. Proximity to its partners and the ability to closely monitor emerging business opportunities will allow the company to scale up supply quickly.

Hydrogen clusters
The expansion of a European hydrogen economy will be a key element in achieving the Green Deal’s objective of net-zero global warming emissions by 2050. The European Union has stated that, to meet this challenge, industry will need ‘climate and resource frontrunners’ to develop the first commercial applications of breakthrough technologies in key industrial sectors by 2030. The emergence of hydrogen clusters in Europe sees different sectors uniting and bringing their skills, technologies and applications together, such as truck, bus and taxi fleets and H2 infrastructure, to create viable business opportunities. This will allow them to flourish and become the nucleus of larger-scale activities.

Toyota to use motorsports to develop hydrogen-fueled engine (w/VIDEO)

Motorsports have long been used for the testing and development of many new technologies which have eventually been used for everyday cars. Engineers who work with racing teams have to do so under challenging conditions that also require speed due to competition, and this provides fertile ground for developing new solutions to improve performance.

Toyota Motor Corporation (TMC) will also be taking this approach in developing a hydrogen-fuelled engine. Actually, the engine already exists and It has been installed in a racing car based on Toyota’s Corolla Sport. This car will enter races under the ORC ROOKIE Racing banner, starting with the Super Taikyu Series 2021 Powered by Hankook Round 3 NAPAC Fuji Super TEC 24 Hours Race in May.

The hydrogen-fuelled racing car undergoing tests.

By refining its under-development hydrogen engine in the harsh environment of motorsports, Toyota aims to contribute to the realization of a sustainable and prosperous mobility society, ultimately enabling a carbon-neutral mobility society.

Toyota has long engaged in the innovation of engine technology, and  in fact, the company has not only successful developed fuel cells (FCs) which use hydrogen that chemically reacts with oxygen in the air to produce electricity, but it has also used those fuel cells to power the electric motor in the Mirai, Toyota’s first commercialised fuel cell electric vehicle (FCEV). Except for the combustion of minute amounts of engine oil during driving, which is also the case with petrol engines, hydrogen engines emit zero CO2 when in use.

For the hydrogen engine, the fuel delivery systems for FCEVs have been modified from those used with petrol engines. Combustion in hydrogen engines occurs at a faster rate than in petrol engines, resulting in a characteristic of good responsiveness. While having excellent environmental performance, hydrogen engines also have the potential to relay the fun of driving, including through sounds and vibrations.

Plans are for the hydrogen-engined racing car to be fueled during races using hydrogen produced at the Fukushima Hydrogen Energy Research Field. While aiming to expand the hydrogen infrastructure in Japan by promoting hydrogen use, Toyota intends to continue advancing efforts for economic recovery and revitalization of the Tohoku region together with all parties concerned.

Even in safety, Toyota intends to apply the technologies and know-how that it has accumulated through the development of fuel cell vehicles and the commercialization of the Mirai. To ensure safety related to the use of hydrogen and high voltage, the countermeasures cultivated during the development of electrified vehicles such as FCEVs and HEVs were implemented. These measures are based on the basic approach of ensuring that hydrogen does not leak and, in the unlikely event that any leaks should occur, ensuring their immediate detection and stoppage.

Toyota Mirai 1st Generation
Mirai – Toyota’s first commercialised fuel-cell electric vehicle runs on hydrogen. Two generations have been produced since it first went on sale in 2014.

Toward achieving carbon neutrality, Toyota has been strengthening its efforts, such as by aiming to promote the use of hydrogen through the popularization of FCEVs and numerous other fuel-cell-powered products. Toyota has been taking various initiatives toward the creation of a hydrogen society, such as selling the Mirai and SORA FCEV bus, selling FC systems to FC product companies, as well as allowing royalty-free use of its FCEV-related patent licenses.

SORA FC Bus

Toyota has developed a product that packages individual FC system-related products of second generation Mirai with enhanced performance, such as the FC stack, as well as components that handle air supply, hydrogen supply, cooling, and power control, into a single compact module.

Toyota Mirai FCEV fleet in Germany clocks total of over 5 million kms

Archive

Follow us on Facebook

Follow us on YouTube