Piston.my

Hydrogen Fuel Cell

In February of this year, the BMW iX5 Hydrogen pilot fleet embarked on a significant hot-weather testing endeavour in the United Arab Emirates, marking its first foray into such extreme conditions. Despite temperatures soaring to 45°C, challenging encounters with sand, dust, varying gradients, and fluctuating humidity levels, the car’s fuel cell drive system performed remarkably well.

The efficiency of the fuel cell system, two hydrogen tanks, electric motor, and power battery, alongside the central vehicle control unit, demonstrated exceptional performance. BMW’s development team in Munich rigorously evaluated the functionality of all electric systems under these extreme conditions and assessed the cooling power necessary to maintain peak vehicle performance. The fleet maintained the renowned BMW driving dynamics even under these challenging circumstances.

Units from the pilot fleet are currently operating in diverse regions worldwide, including Europe, Japan, Korea, China, the USA, and the Middle East. The primary objective is to underscore the practicality of hydrogen-powered vehicles in everyday use while gaining crucial insights for the potential development of a production model. The BMW Group is leveraging this pilot fleet to support the regional development of a refueling infrastructure compatible with 700-bar refueling technology, catering to various vehicle categories from passenger cars to heavy-duty commercial vehicles. Exploring synergies across applications is also crucial for establishing a robust hydrogen technology supplier network and cost reduction.

(more…)

Toyota has taken another significant step towards its goal of achieving zero carbon emissions by unveiling a prototype hydrogen fuel cell-powered Hilux. This introduction showcases Toyota’s comprehensive approach to carbon-free mobility, exemplified by its diverse range of powertrain solutions, including hybrid electric, plug-in hybrid electric, battery electric, and fuel cell electric vehicles.

The prototype was revealed at Toyota Manufacturing UK’s Burnaston car plant in Derby, where it was developed through a collaborative effort with consortium partners, with support from UK Government funding. The Hilux, known globally as an emblematic truck within the Toyota brand, is renowned for its reliability and durability. This development project has explored ways to maintain these qualities while introducing a new electrified powertrain, underscoring Toyota’s commitment to innovation and sustainability.

(more…)

Yoshihiro Hidaka, president and CEO of Yamaha Motor, has backed hydrogen as a practical and clean way to achieve carbon neutrality and said the company would develop it as a fuel source.

(more…)

In order to become an electric-only brand by 2030, Rolls-Royce is planning to introduce its first BEV, the Spectre, in the fourth quarter of 2023.

However, when the technology is developed enough to be widely commercialised, Rolls-Royce is looking into a different route to electrification in which it may switch from battery power to hydrogen fuel cells.

According to the CEO of Rolls-Royce Torsten Müller-Ötvös, the brand’s strategy leaves the door open for future consideration of hydrogen, Autocar reported.

Müller-Ötvös reacted to the idea that his company’s huge, heavy luxury cars, which are famed in part for their smooth V12 engines, might benefit from the hydrogen combustion technology.

(more…)

Car manufacturers are now moving towards a “greener” future by producing electric vehicles (EVs) to reduce global CO2 emissions. However, if you look beyond what comes out of the vehicle’s exhaust system, there is a bigger picture to consider, as explained by Rowan Atkinson.

Some may already know that Atkinson is a gearhead with a degree in electrical and electronic engineering, along with a subsequent master’s degree in control systems. He has owned multiple classic and legendary cars such as the BMW 328, McLaren F1, 2002 Acura NSX-T, Mercedes-Benz SLS AMG, Aston Martin V8 Vantage (1977), and more. Initially, he had a love for EVs when he purchased his first electric hybrid 18 years ago and his first pure electric car nine years ago. However, he believes that EVs, while wonderful mechanisms, lack soul—a sentiment we wholeheartedly agree with.

(more…)

Isuzu Motors Limited and Honda Motor Co., Ltd. have announced the signing of a partnership agreement to have Honda develop and provide the fuel cell system for the fuel cell-powered heavy-duty trucks that Isuzu plans to launch in 2027.

What are fuel cell-powered heavy trucks? A fuel cell truck is an electric truck that generates electricity from fuel cells that are powered by hydrogen stored in tanks in the truck. In a fuel cell, hydrogen and oxygen are combined through an electrochemical reaction to generate electricity, heat and water.

(more…)

As reported in January, Sarawak Premier Datuk Patinggi Tan Sri Abang Johari Tun Openg received a hydrogen-powered Toyota Mirai.

(more…)

Since the 1970s, when it was clear that the combustion engine powering motor vehicles was a major culprit in air pollution and also diminishing fossil fuel supplies, there has been a search for an alternative propulsion system that does not pollute and is also sustainable. Instead of fossil fuel – the product of dead dinosaurs and plants millions of years ago – electricity is the ‘fuel’ of the future.

Electricity is used to power motors and like liquid fuel, it is stored in a battery pack in a limited quantity which needs to be replenished. The electricity comes from power generating plants that run mainly on coal, which generates undesirable emissions. So while electric power is ‘clean’, the electricity itself comes from a source that is still not clean.

There are alternative electricity generation methods – hydro-electricity, solar and wind – but these are limited in use at this time. What has been seen as promising has been the fuel cell concept that was originally developed for spacecraft. This concept uses hydrogen as a fuel in an electrochemical process that combines hydrogen and oxygen to produce electrical energy and water.

(more…)

In 1991, Renault displayed a concept car that was the forerunner of compact MPVs with its novel management of the interior layout to comfortably accommodate a whole family. The model was called the Scenic concept, and its format would be used in a new generation of models that also used the same name.

31 years later, the French carmaker is again using the name and as before, the new model starts a new chapter in its history. Known as the Scenic Vision, the new concept car embodies the brand’s sustainable development commitments and encapsulates them in a single vehicle. Its intelligent design and manufacture incorporate methods that the Renault Group and its brands will use to achieve carbon neutrality in Europe by 2040 and worldwide by 2050.

2022 Renault Scenic Vision concept EV

Previous Scenic concept introduced the compact MPV format to the world in 1991.

With the Scenic Vision, Renault is proposing ‘a car for life and for living’, with a new vision for the family car. Its exterior design, measuring 4.49 metres in length, provides a preview of an all-electric model in the C-segment that will be unveiled in 2024.

2022 Renault Scenic Vision concept EV

2022 Renault Scenic Vision concept EV

The unique design is enhanced by the choice of colours, where black and white create a singular graphic universe. Shades of black on the outside, and white on the inside, offer a contrast of light and dark that reflects the design team’s wish for this concept car to be a work of art where artistic expression takes to the fore.

Fuel cell powertrain
The Scenic Vision is proposed with a fuel cell that generates electricity for a new-generation motor. The 160 kW motor derives directly from the latest Megane E-Tech Electric’s motor and uses no rare-earth elements. This helps to reduce its carbon footprint and create a responsible and sustainable ecosystem.

The 40 kWh battery pack is recyclable and will be made in France by 2024 at the Renault ElectriCity Gigafactory. It is lighter, smaller and costs less than a battery pack for a similar electric vehicle. The 15 kW fuel cell will recharge it during long drives and thus extend its range. In 2030 and beyond, once the network of hydrogen stations is large enough, it will be possible to drive up to 800 kms, with the hydrogen tank able to be refilled in 5 minutes or less.

2022 Renault Scenic Vision concept EV

The all-new platform used by the Scenic Vision is currently in the prototyping phase. It is purpose-designed to fit all the components –  electric motor, hydrogen engine, battery, fuel cell and hydrogen tank. The engine is at the rear, so there is enough space for the 2.5-kg hydrogen tank at the front; the fuel cell is under the floor, at the back of the platform, behind the battery.

Optimal travel times
This propulsion system’s operation is simple and efficient. The car can be driven as a conventional electric vehicle, without using the fuel cell, on daily trips. When there is a requirement to travel longer distances, a route planner calculates the power the fuel cell needs to supply to keep the battery charged for longer, so that there is no need to charge it on the way.

The point of using the fuel cell on long journeys is that it’s quicker to top up the hydrogen tank than to charge the battery. This way, there is no need to charge the battery until the car reaches its destination. When the weather is cold, the hydrogen range-extender also keeps the battery at the right temperate for optimal operation and extra range.

2022 Renault Scenic Vision concept EV

95% recyclable
A full 95% of this concept car’s materials – including the battery – are recyclable. This new approach to design looks beyond the vehicle and includes previously unexplored ventures and technologies. The exterior materials (steel, aluminium, carbonfibre and plastics) can all be recycled at the end of their life.

Everything inside is also designed responsibly. For example, the foams, fabrics and stitching on the light beige seats are made of the same material, produced from fully recycled and recyclable plastic.

2022 Renault Scenic Vision concept EV

Estimates suggest that the number of electric vehicles on Europe’s roads will increase tenfold between now and 2030, from 10 million to 100 million. The Renault Group is the first carmaker to work on the full battery lifecycle, and has developed solid expertise in increasing their durability and using them for a wider variety of purposes. Once a battery is no longer fit to power a vehicle, its energy can be reused in stationary storage solutions in homes or offices, or elsewhere (in boats, refrigeration systems, machinery or airport logistics, etc).

The steel in the vehicle’s structure is made from 95% recycled steel, while all the aluminium parts in the structure (housings, battery casing, seats) and trims (console, cockpit) are made from 100% recycled aluminium. All the carbonfibre is recycled from aviation industry scrap via a partnership with Airbus, and the hydrogen tank is made with carbonfibre produced from paper-industry waste.

2022 Renault Scenic Vision concept EV

Elsewhere, 70% of the interior and exterior plastics are recycled, with 100% of the textile fabrics made of recycled materials. It is also entirely leather-free, while the floor is made of 100% recycled plastics from food and industrial waste

Help for safer motoring
The Scenic Vision previews technology and systems which will provide assistance to drivers, enabling them to better avoid risky situations, and reduce stress behind the wheel. The multiple ADAS (Advanced Driver Assist Systems) and 3 on-board systems  – Safety Score, Safety Coach, and Safe Guardian, are designed to provide extra safety for all, as well as a unique level of both physical and psychological comfort.

New Renault models will soon come with a ‘Safety Score’. Using data collected by sensors mounted on the vehicle, it analyses the driver’s driving style – acceleration, smoothness, inattention, speed management, and driver distractibility. It then gives personalised driving tips to each driver based on a safety score calculated at the end of each trip.

To further aid drivers, the vehicle comes fitted with an array of health monitoring systems. A heart rate sensor placed in the steering wheel and a camera serve to detect signs of driver fatigue or inattentiveness. Should a problem arise, warning signals are sent to the driver and passengers, and emergency services are alerted automatically.

2022 Renault Scenic Vision concept EV

The Scenic Vision has been designed with a new architecture that features an extra-large screen located where the dashboard meets the windscreen. It displays the car’s immediate environment, thanks to an array of on-board cameras located at the front of the vehicle. The system increases the driver’s field of view by 24% due to a visual widening of the windscreen and a front bonnet that ‘disappears’.

New technological solutions help rescue services at the scene of an incident. The Fireman Access and Rescue Code are two such systems already featured on production vehicles, with the former featuring a specialised access hatch to the core of the battery that means it now only takes a few minutes to extinguish a battery fire instead of up to 2 hours.

2022 Renault Scenic Vision concept EV

Renault OpenR puts a huge smartphone in the car

Fuel cells, originally developed for spacecraft, use hydrogen in a chemical reaction that can generate electricity that can then be sent to the battery pack. Hydrogen is chosen because it is readily available and renewable, and a Fuel Cell Electric Vehicle (FCEV), like a Battery Electric Vehicle (BEV), generates no emissions although water is formed. The FCEV approach would be more ‘green’ as it generates its own electricity rather than drawing it from power stations that themselves may generate emissions.

The two prototype FCEVs developed by the UKM Fuel Cell Institute (Sel Fuel) team.

The auto industry has been developing FCEVs for some years and companies like Toyota and Honda have even sold such vehicles. Now a team from the Fuel Cell Institute (Sel Fuel) at University Kebangsaan Malaysia (UKM) has also developed hydrogen FCEVs in collaboration with industry partners through the modification of electric vehicles.

Professor Ir. Dr. Siti Kartom Kamarudin and Associate Professor Dr. Mohd Shahbuddin Mastar @ Masdar from the UKM Fuel Cell Institute, who led the R&D team, developed the UKM FCH2HC, a mini version of a hybrid SUV, and the UKM-FCH2B, a buggy.

According to Siti Kartom, the UKM-FCH2B is unique as the battery has been replaced with a fuel cell system as an electrical power source to improve the buggy’s operational efficiency, as well as a 3000W stationary power generator for electrical appliances (campers will love the idea).

In order for FCEVs to be used, there will need to be hydrogen stations set up for them to refuel with hydrogen. Such station are only just being set up in limited numbers in more advanced countries.

“The UKM-FCH2HC is a hybrid vehicle that combines a fuel cell and a battery in a 0.5 ratio, with each power source capable of providing a capacity of up to 10 kW, allowing the vehicle to travel further. The fuel cell system is equipped with humidifiers and water coolers as supporting units to ensure optimal system performance at all times,” she said.

“During the chemical reaction, hydrogen and oxygen combine to produce electrical energy and harmless water vapour as a by-product, making hydrogen safe because it does not contaminate or harm the surrounding environment, unlike liquefied petroleum gas,” she explained.

How a fuel cell generates electricity from hydrogen.

Project began 15 years ago
“We began this project about 15 years ago with fundamental research to develop high-quality catalysts and membranes. Only in the last 3 years have we been able to bring together all of the fundamental components needed to develop the vehicle’s system,” she said. “As both the SUV and buggy will be used on campus, the speed is limited to 60 km/h. My team and I are looking forward to working on a second generation of the vehicles with increased capacity.”

The various elements of a FCEV.

Quick refuelling time
Mohd Shabuddin added that the quick charging time of a FCEV is a significant advantage. Fully electric vehicles require 7 to 8 hours to charge, depending on the charging station and battery capacity. FCEVs, on the other hand, offer faster refuelling times that can take less than 3 minutes depending on the pressure [of the hydrogen supply],” he said.

He added that one of the most difficult aspects of developing hydrogen cell fuel vehicles is their high cost. “We believe in the country’s direction toward greener energy will result in mass production of these vehicles, lowering the cost of production. The recent 12th Malaysian Plan includes hydrogen as one of the government’s renewable energy initiatives to develop hydrogen-powered vehicles, which I believe is a good start for the future of this technology,” he said.

Hydrogen FCEV models have been on sale to the public from Hyundai (top), Honda (middle) and Toyota (above).

The UKM Fuel Cell Institute has also been appointed as the Head of the Research Excellence Consortium Programme in the Transportation and Mobility category by the Ministry of Higher Education. The launching of the FCEVs recently symbolises the support and commitment of UKM towards Malaysia’s Low Carbon Mobility Development Plan 2021-2030 to reduce greenhouse gas up to 45% by 2030 and to be listed as a carbon-neutral country by 2050.

The next step after BEVs
FCEVs would be the next step after BEVs but even in advanced countries like America and Japan, the hydrogen fuelling network is small. The Japanese government has a plan to expand the hydrogen network as it wants to create a ‘hydrogen society’ that can be carbon-neutral. However, the costs are still high at this time and although there are FCEVs in use, the number is relatively small to justify investment in hydrogen stations for FCEVs to refuel.

Hyundai Motor Group aims to take lead in technology for future hydrogen society

Archive

Follow us on Facebook

Follow us on YouTube