Piston.my

Latest News

A Japanese driver will again appear in Formula 1 for the 2021 season, the first time in 6 years of the Formula 1 World Championship. He is Yuki Tsunoda, a member of the Honda’s Junior Driver program, who has been given a drive with Scuderia AlphaTauri Honda.

Third in 2020 F2 championship
The 20-year old is also a member of the Red Bull Junior Team and this year has been racing for the Carlin team in the FIA Formula 2 championship, regarded as the main feeder series for Formula 1. In his rookie F2 season, Tsunoda took 3 wins, finished on the podium a further 4 times and ended the year in third place overall in the championship. The points collected were enough for him to be granted a Formula 1 super license.

He also completed a test in a 2018 Formula 1 car at Imola in early November and recently took part in the Young Driver Test in Abu Dhabi, driving for his new team.

“Like most racing drivers, it has always been my goal to race in Formula 1, so I am very. I want to thank Scuderia AlphaTauri, Red Bull and Dr. Helmut Marko for giving me this opportunity and, of course, everyone from Honda, for all their support so far in my career, giving me great opportunities to race in Europe,” said Tsunoda who, like many F1 drivers, got started in karting.

Fast learner
“Red Bull has been following Yuki’s career for a while now and I am sure he will be a great asset to our team. Watching him in Formula 2 this year, he has demonstrated the right mix of racing aggression and good technical understanding. During the test in Imola in November when he drove our 2018 car, his lap times were very consistent over a race simulation, he progressed throughout the day and gave our engineers useful feedback. In addition, his integration with the Honda engineers has been seamless, which certainly helps. At the test in Abu Dhabi, he proved to be a fast learner and that he is ready to make the step to Formula 1,” said Franz Tost, Team Principal of Scuderia AlphaTauri Honda.

Tsunoda will be the 18th Japanese driver to race in F1. The last time a Japanese driver took part was in 2014 when Kamui Kobayashi drove for the Caterham team. Prior to that, Kobayashi had been with the Toyota and Sauber teams between 2009 and 2012.

While there will again be a driver from Japan next year, it will also be Honda’s last year in the Formula One World Championship as a power unit supplier. The carmaker, which was the first Japanese manufacturer to participate in Formula 1 in the 1960s, announced its decision in early October, explaining that it is being done in order to concentrate corporate resources on research and development of new power units and energy technologies.

Two months ago, Hyundai Motor revealed its smallest ever model, a one-of-a-kind mini EV based on the ‘45’ concept car based on the ‘45’ EV concept that Hyundai displayed in 2019 at the Frankfurt Motorshow.

While it would be a wonderful Christmas present for little ones, the Korean carmaker has offered it to the SJD Barcelona Children’s Hospital in Spain as part of the ‘Little Big e-Motion’ project. The mini EV is being used to support the mobility of young patients from hospital bed to treatment room, which is considered one of the most stressful trips for the children.

Hyundai Mini EV

EAVC is an artificial intelligence-based technology that optimizes vehicle environment based on information from both inside and outside the vehicle. Hyundai Motor Group is leading the development of this next-generation technology, as part of an academic research collaboration with the Massachusetts Institute of Technology (MIT) Media Lab.

EAVC technology monitors facial expressions, heart rate and respiratory rate, and combines these readings with input from the vehicle including speed, acceleration, noise and vibration. The technology then processes the data utilizing machine learning to optimize the vehicle environment and actively controls vehicle systems such as lighting, climate, music and fragrance dispenser.

Hyundai Mini EV

EVAC is at the heart of Hyundai’s ‘Little Big e-Motion’ project. Equipped with this technology, the mini EV – designed by the same team that oversaw the ‘45’ concept – can provide a fun, safe mobility experience for young patients and help improve their health outcomes.

“The hospital is very excited to have such a technology available for kids. This will dramatically change the way patients will face treatment,” said Joan Sanchez de Toledo, Head of Paediatric Cardiology Department at SJD Hospital.

2019 Hyundai 45 EV Concept
The 2019 Hyundai 45 Concept on which the mini EV’s design is based.

The EAVC-equipped mini EV interacts with its young ‘driver’ through five key technologies: Facial Emotion Recognition System, Breathing Exercise Belt, Heart Rate Monitoring Sensor, Emotion Adaptive Lighting, and Emotion Adaptive Scent Dispenser.

The Facial Emotion Recognition System uses a camera in front of the seat to identify the child’s emotions in real-time. The Breathing Exercise Belt wraps around the body and its air pockets apply gentle pressure the help relieve anxiety and enable more stable breathing, while the accelerometer, the Heart Rate Monitoring Sensor, measures the heart rate and breathing rate.

Hyundai Mini EV

The Emotion Adaptive Lighting displays green, yellow or red to show the child’s emotional state in colours. The Emotion Adaptive Scent Dispenser sprays fragrance timed with breathing to help put a smile on the faces of the young patients. The vehicle also blows bubbles to celebrate the child’s progress toward treatment.

In addition to providing emotional support for the young patients, EAVC also assists the work of the medical staff at the hospital by informing them about the emotional state of the young patients without in-person interactions, which is especially useful in the era of COVID-19.

Hyundai Motor plans to continue supporting the treatment of young patients at SJD hospital through the project, while also fine-tuning its EAVC technology through this application. The company hopes to expand the use of this next-generation technology in mobility devices in the future to enhance driver safety and well-being.

In October 2019, Jaguar revealed its first all-electric sportscar created for the globally-renowned Playstation Gran Turismo series – the Jaguar Vision Gran Turismo Coupe. It was built in the real-world as full-scale design study and served as the starting point for a more advanced car – the Vision Gran Turismo SV.

It was an opportunity to re-evaluate everything that could improve performance and in doing so, re-think what an electric Jaguar endurance racing car could be. Fundamental to that process was detailed analysis of gamer feedback from online videos and forums. This ‘virtual world testing’ combined with many hours ‘behind the wheel’ enabled the design and engineering teams to determine exactly how to optimise the Vision GT SV to create the perfect electric gaming endurance racing car.

2020 Jaguar Vision GT SV

Ultimate gaming endurance racer 
“Jaguars created for the racetrack and the road have always shared the same DNA – whether that’s the D-type and XKSS, or the I-PACE and the I-TYPE. So, when the design team behind the Vision GT Coupe were asked to create the ultimate electric gaming endurance racer for Gran Turismo, they worked with engineers from SV and Jaguar Racing to create something really special,” said Julian Thomson, Jaguar’s Design Director.

“The Vision GT SV is a dramatic and visually arresting car which showcases what’s possible when the traditional boundaries governing real-world car design are completely removed. In bringing this car to life with a full-size design study, we’ve been able to showcase the most extreme version of an electric Jaguar racing car that is inspired by the past but looks fearlessly to the future,” he explained.

 

2020 Jaguar Vision GT SV

Designed as the ultimate virtual endurance racer, the Vision GT SV pays homage to its illustrious forebears not only in a host of styling and surfacing references but in its unique circuit board livery which nods to milestones such as the Le Mans debuts of the C-type and D-type in 1951 and 1954 respectively.

Engineered by experts
The streamlined, lightweight composite body structure houses 4 Jaguar Racing and SV-designed electric motors (one more than the Coupe), generating a combined output of 1,903 ps/1,400 kW with 3,360 Nm of instant torque. To efficiently and positively transfer all that output to the road is an intelligent all-wheel drive system and torque vectoring. Acceleration from 0 – 60 mph (96 km/h) is said to take just 1.65 seconds, on the way to a maximum speed of 410 km/h.

2020 Jaguar Vision GT SV

“We were given one objective: take everything that makes the Jaguar Vision GT Coupe so special – the performance, the handling and the soundtrack – and take it to another level,” recalled Jamal Hameedi, Engineering Director for the Jaguar SV. “And the team didn’t just achieve that target – they exceeded it, developing a virtual electric car which really could compete successfully in the extremes of 24-hour endurance racing.”

“Not only that, they were able to see their work in the virtual world, turned into reality with the production of the stunning full-scale model which will no doubt excite gamers about what’s to come in Gran Turismo,” he added.

2020 Jaguar Vision GT SV

The Vision GT Coupé’s elegant silhouette is still clearly recognisable in the GT SV, including the curvature of the C-type and D-type-inspired fenders, and – even with the additional motor driving the front axle – the wheelbase remains unchanged at 2721 mm.

Measuring 5540 mm from nose to tail, the GT SV is 861 mm longer overall – a change driven entirely by aerodynamics. To deliver the increased downforce needed for greater traction for faster cornering and increased high speed stability on long straights, the GT SV has a new front splitter and a new deployable rear wing.

2020 Jaguar Vision GT SV

In addition to the larger, more effective splitter – which produces downforce over the front axle – apertures in the front valance channel air across the face of the front wheels to reduce turbulence and help air to flow cleanly towards the rear of the car. Air passing through the wheel wells is also smoothed towards the rear via exit vents in the fenders.

The completely enclosed, sculpted underbody – which includes a keel element behind the front axle to aid high-speed stability – accelerates airflow, reducing its pressure and therefore helping to reduce lift, before it exits at the rear via a large venturi.

2020 Jaguar Vision GT SV

Deployable rear wing
The single most effective aero feature developed for the GT SV is its deployable rear wing, inspired by endurance racing cars from Jaguar’s past, including the XJR-14. Meticulously developed from concept to final design through many iterations, the wing’s main, fixed, section wraps over and around the back of the car, blending smoothly into the rear haunches.

The wing is designed as an integral element of the sculpted bodywork while also providing the aerodynamic performance required for endurance racing: two moveable sections automatically rise at speed to deliver extra downforce when needed but drop back to their nominal positions to minimise drag.

As a result, the GT SV has a drag coefficient of Cd 0.398 – remarkably low for a racing car – but also generates 483 kgs of downforce at 320 km/h.

2020 Jaguar Vision GT SV

Jaguar Racing engineers developed the GT SV’s quad-motor all-electric propulsion system. They also designed the system for the first Jaguar Vision GT car, applying all of their knowledge and experience from developing the Jaguar I-TYPE over 6 successive seasons.

Power comes from a state-of-the-art lithium-ion battery pack which is housed low down in the light, stiff body structure, delivering a low centre of gravity, a low roll centre and near-perfect weight distribution.

The thermal management system is enhanced by an additional liquid nitrogen circuit which provides extra capacity to enable the battery to provide maximum power for longer while remaining within its ideal temperature range. The nitrogen cooling is also linked to the boost button within the cabin to ensure that even during the most demanding operating conditions the battery will not exceed its upper temperature limit.

2020 Jaguar Vision GT SV

Ultimate virtual driving experience
The unique, powertrain soundscape so fundamental to the visceral driving experience of the Vision GT Coupe has been further enhanced for the GT SV version. Reflecting the increase in power and torque from the 4 electric motors to its precursor’s three, the GT SV generates a sound that is even more purposeful and distinctive, and is authentically yet futuristically Jaguar. Building to a crescendo at the 40,000 rpm redline, it reflects the GT SV’s true racing DNA and delivers unrivalled driver reward.

2020 Jaguar Vision GT SV

Although Toyota is well known for hybrid vehicles, which it pioneered as a mass producer, it has also been developing and selling fully electric vehicles (EVs) for many years. While it recognises that pure EVs are – which are also referred to as Battery Electric Vehicles or BEVs – are going to increase in the market, the segment is not particularly large yet. Nevertheless, the company has made plans to sell 1 million BEVs and hydrogen fuel cell vehicles (which also have electric powertrains) by 2030.

Meanwhile, it is improving a small range of BEVs and selling them in limited numbers, mainly in Japan where engineers can more easily monitor usage and investigate any issues that arise. With BEV technology as part of Toyota’s future mobility roadmap, there is a need to encourage large numbers of people to adopt them and the company is progressively introducing such models.

Toyota C+pod 2020

A new mobility option
The latest one announced today is the new C+pod, a 2-seater BEV designed as a mobility option that improves per-person energy efficiency. In addition to short-distance daily use, the C+pod is also aimed at corporate users visiting customers on a regular basis, and at users in urban or mountainous communities needing safe, unrestricted, and environmentally-friendly transportation options.

The C+pod is 2.5 metres long and 1.3 metres wide so it is a compact vehicle and can turn within a tight radius of 3.9 metres. It’s therefore ideal for urban use and require minimum steering wheel operation when parking.

Toyota i-Road
Toyota has been producing the i-Road 3-wheeler BEV since 2013 and is running it in public trials in Japan and Switzerland.

The under-floor location of the lithium-ion battery in front of the seat creates a flat, low-floor package that minimizes steps. The motor is positioned in the rear of the vehicle while the independent suspension system absorbs irregularities in the road surface and maintain stable movement.

Lightweight body with 150-km range
The motor can generate up to 9.2 kW with 56 Nm of torque, which is sufficient to give the lightweight 690-kg vehicle good performance. Factory tests using industry test cycles have achieved  cruising range of up to 150 kms which would be adequate for daily use.

The C+pod can be charged at home or in public areas and in Japan, there are around 15,000 stations nationwide, all of which will be marked on the navigation system. Depending on the charging method used, an empty lithium-ion battery pack can be fully recharged between 5 and 15 hours.

BEV recharging station in Japan
There are now around 15,000 charging stations throughout Japan (Toyota COMS BEVs being recharged in Nagoya)

Mobile power supply capability
The C+pod includes an external power supply system of up to 1,500W as standard for use during power outages and natural disasters. In addition to use through the accessory power outlet near the passenger’s feet, the optional vehicle power connector can be plugged into the standard charging inlet at the front of the car for use as an external power supply socket, which can supply power for up to about 10 hours.

The 1100-mm wide cabin provides a simple space for two adults to sit side-by-side. Positioned above a white centre tray, the instrument panel features meters and other functional equipment. The contrast with the black tones of the interior creates a feeling of spaciousness.

Toyota C+pod 2020

Toyota C+pod 2020

Toyota C+pod 2020

Toyota has made sure the C+pod has safety features to protect the occupants even though its body is compact and has plastic panels in some areas. Its structure efficiently disperses and absorbs impact energy across multiple components during frontal, side or rear impacts. Injuries to pedestrians are also reduced during a collision with the vehicle, thanks to the design of the front end elements.

The C+pod will be sold only in Japan and customers can choose from two grades, priced from 1,650,000 yen (about RM65,000).

Toyota C+pod 2020

People who can afford to buy a McLaren will often want to have a degree of personalisation, especially in place like Beverly Hills where neighbours might also own McLarens. So what the dealer there did was to offer 15 customers not only an exclusive version specially commissioned from McLaren Special Operations (MSO) but also invite them to participate in the development process.

Known as the McLaren Sabre, the hypercar is designed and homologated exclusively for the US market, stretching design, engineering and aerodynamic conventions to new limits. It has the most powerful non-hybrid McLaren twin-turbo V8 engine to date, generating 824 bhp/800 Nm. With a claimed maximum speed capability of 350 km/h, it is the fastest-ever two-seater McLaren.

2020 McLaren Sabre

2020 McLaren Sabre

Only 15 units produced
The Sabre by MSO is the co-creation of its customers and McLaren Special Operations designers and engineers. There are just 15 examples, each personalized and featuring ideas and innovations that global homologation would not necessarily permit. The first customers have received their cars this week, just in time for Christmas.

The Bespoke Commission customer experience includes a close working relationship with the MSO development team of designers, engineers and test drivers to ensure that the finished car would exactly match their desired and personalized concept.

2020 McLaren Sabre

2020 McLaren Sabre

 

Extensive level of access
“I’ve been fortunate enough to have been involved with a number of very special cars and I’ve never seen a manufacturer give clients the level of access that McLaren Special Operations has provided for the Sabre,” said Parris Mullins, Motorsport Director for a racing team. “Everything from visiting the ‘skunkworks’ style design studio in the UK to flying out the actual development test mule for clients to get behind the wheel of and drive at a private track –these just aren’t things you typically get access to.”

The build process culminated with a highly exclusive and secret track day for customers. Each owner was allowed to drive a development car multiple times throughout the day, while being coached from the right seat. After returning from the drive, owners met in a private room to give direct feedback via video chat to the design and engineering team back in England.

2020 McLaren Sabre

Archive

Follow us on Facebook

Follow us on YouTube